
MATH 245 S23, Exam 2 Solutions

1. Carefully define the following terms: Proof by Reindexed Induction, well-ordered by <.
To prove ∀x ∈ N, P (x) by reindexed induction, we must (base case) prove P (1) is true; and
(inductive case) prove ∀x ∈ N (with x ≥ 2), P (x− 1)→ P (x). Given a set S and an ordering
<, we say that S is well-ordered by < if every nonempty subset of S has a minimum element,
in the < ordering.

2. Carefully state the following: Proof by Cases Theorem, Proof by Contradiction Theorem
The Proof by Cases theorem states: For any propositions p, q, to prove p → q, we can find
propositions c1, . . . ck such that c1∨· · ·∨ck ≡ T , and then prove (p∧c1)→ q, . . . , (p∧ck)→ q.
The Proof by Contradiction theorem states: For any propositions p, q, to prove p → q, we
can prove p ∧ ¬q ≡ F .

3. Let an = 3n2 + 7. Prove that an = Θ(n2).

This must be done in two parts, i.e. an = O(n2) and an = Ω(n2).

an = Ω(n2): Choose n0 = 1 and M = 1. Let n ∈ N with n ≥ n0 be arbitrary. Now
M |an| = |3n2 + 7| = 3n2 + 7 ≥ 3n2 ≥ n2 = |n2|. Hence M |an| ≥ |n2|.
NOTE: Some of you really wanted n0 = 1 and M = 1

10 for an = Ω(n2). This doesn’t work.
For example, try n = 2: an = 3 · 22 + 7 = 19, n2 = 22 = 4, so M |an| = 19

10 = 1.9 < 4 = |n2|.
an = O(n2): Choose n0 = 3 and M = 4. Let n ∈ N with n ≥ n0 be arbitrary. Now
n2 ≥ 32 = 9 ≥ 7. Hence 3n2 + 7 ≤ 3n2 + n2, so |an| = |3n2 + 7| = 3n2 + 7 ≤ 4n2 = M |n2|.
Hence |an| ≤M |n2|.
ALTERNATIVE an = O(n2): Choose n0 = 1 and M = 10. Let n ∈ N with n ≥ n0 be
arbitrary. Now (M − 3)n2 = 7n2 ≥ 7. Hence 3n2 + 7 ≤Mn2, so |an| = |3n2 + 7| = 3n2 + 7 ≤
Mn2 = M |n2|.

4. Prove the following: ∀x ∈ R, 3x− 2|x + 1| < x.
Let x ∈ R be arbitrary. We have two cases, based on whether x ≥ −1 or x < −1.
Case x ≥ −1: Here |x + 1| = x + 1, so 3x− 2|x + 1| = 3x− 2(x + 1) = x− 2 < x.
Case x < −1: Here |x + 1| = −(x + 1), so 3x − 2|x + 1| = 3x + 2(x + 1) = 5x + 2. Now,
x < −1, so 4x < −4, so 4x + 2 < −4 + 2 = −2 < 0, so x + 4x + 2 < x + 0, so 5x + 2 < x.
Combining, we get 3x− 2|x + 1| < x, just as in the first case, as desired.

5. Prove the following: ∀n ∈ N,
n∑

i=0

(2i− 1) = n2 − 1.

Base case (n = 1):
∑1

i=0(2i− 1) = −1 + 1 = 0, which equals 12 − 1 = 0.
Inductive case: Let n ∈ N and suppose that

∑n
i=0(2i−1) = n2−1. Add 2(n+1)−1 = 2n+1

to both sides, getting
∑n+1

i=0 (2i− 1) = n2 − 1 + 2n + 1 = (n + 1)2 − 1.

6. Recall the Fibonacci numbers Fn. Prove that ∀n ∈ N with n ≥ 3, that Fn > 1.1n.
Helpful facts: 1.12 = 1.21, 1.13 = 1.331, 1.14 = 1.4641

We need two base cases: F3 = 2 > 1.331 = 1.13, and F4 = 3 > 1.4641 = 1.14.
Inductive case: Let n ∈ N with n ≥ 3 be arbitrary. Assume that Fn > 1.1n and Fn+1 > 1.1n+1.
Adding the inequalities, we get Fn+2 = Fn+Fn+1 > 1.1n+1.1n+1 = 1.1n(1+1.1) = 1.1n(2.1) >
1.1n(1.21) = 1.1n1.12 = 1.1n+2. Hence Fn+2 > 1.1n+2.



7. Solve the recurrence with initial conditions a0 = 2, a1 = 3, and recurrence relation an =
2an−1 − an−2 (n ≥ 2).

The characteristic polynomial is r2 − 2r + 1 = (r − 1)2. Hence we have a double root r = 1,
and the general solution is an = A1n +Bn1n = A+Bn. We now apply the initial conditions
2 = a0 = A + B · 0 = A and 3 = a1 = A + B · 1 = A + B, to get A = 2, B = 1. Hence the
specific solution is an = 2 + n.

For the remaining problems 8-10, we consider a new rounding function, “thround”. For x ∈ R,
we define “the thround of x”, writing [x], as an integer satisfying [x]− 1

3 ≤ x < [x] + 2
3 .

8. Prove uniqueness, i.e. ∀x ∈ R ![x] ∈ Z, [x]− 1
3 ≤ x < [x] + 2

3 .

Let x ∈ R be arbitrary. Suppose we had integers [x]1 and [x]2 satisfying [x]1 − 1
3 ≤ x < [x]1+ 2

3
and [x]2 − 1

3 ≤ x < [x]2 + 2
3 . Combining the two orange inequalities gives [x]1 − 1

3 < [x]2 + 2
3 ,

i.e. [x]1 < [x]2 + 1 (after adding 1
3 to both sides). Combining the other two inequalities

gives [x]2 − 1
3 < [x]1 + 2

3 , i.e. [x]2 − 1 < [x]1 (after subtracting 2
3 from both sides). Hence

[x]2 − 1 < [x]1 < x2 + 1, and by a theorem from the book (1.12d), we have [x]2 = [x]1.

9. Prove existence, i.e. ∀x ∈ R ∃[x] ∈ Z, [x]− 1
3 ≤ x < [x] + 2

3 .

We must begin by letting x ∈ R be arbitrary.

PROOF 1: Define S = {n ∈ Z : n ≤ x + 1
3}, which has upper bound x + 1

3 . This is a
half-line, so is a nonempty set of integers. By maximal element induction, there must be
some maximum element [x] ∈ S (in particular, [x] is an integer). Hence, [x] ≤ x + 1

3 and
[x] + 1 > x + 1

3 . Subtracting 1
3 throughout and recombining, we get [x]− 1

3 ≤ x < [x] + 2
3 .

PROOF 2: We apply the floor function to x+ 1
3 , getting an integer m = bx+ 1

3c which satisfies
m ≤ x+ 1

3 < m+ 1. Now, we subtract 1
3 throughout, getting m− 1

3 ≤ x+ 1
3 −

1
3 < m+ 1− 1

3 ,
i.e. m− 1

3 ≤ x < m+ 2
3 . Hence we have found an integer, namely m, that satisfies the desired

thround double inequality.

10. Prove or disprove: ∀x ∈ R ∀k ∈ Z, [x + k] = [x] + k.
The statement is true. Let x ∈ R and k ∈ Z be arbitrary.

PROOF 1: Apply problem 9 to x to get [x] − 1
3 ≤ x < [x] + 2

3 . Add k throughout to get
[x] + k − 1

3 ≤ x + k < [x] + k + 2
3 . Now, apply problem 8 to x + k. There is at most one

integer n satisfying n− 1
3 ≤ x+ k < n+ 2

3 . However, we have n = [x] + k (from the preceding
calculation) and n = [x + k] (from problem 9 applied to x + k) satisfying both inequalities.
Hence, [x] + k = [x + k].

PROOF 2: Apply problem 9 to x to get [x] − 1
3 ≤ x < [x] + 2

3 . Add k throughout to
get [x] + k − 1

3 ≤ x + k < [x] + k + 2
3 . Apply problem 9 to x + k to get [x + k] − 1

3 ≤
x + k < [x + k] + 2

3 . Combine the orange inequalities to get [x] + k − 1
3 < [x + k] + 2

3 , i.e.
[x] + k < [x + k] + 1. Combine the two other inequalities to get [x + k]− 1

3 < [x] + k + 2
3 , i.e.

[x+ k]− 1 < [x] + k. Hence [x+ k]− 1 < [x] + k < [x+ k] + 1, so by a theorem from the book
(1.12d), we have [x + k] = [x] + k.


