1.

MATH 245 S23, Exam 2 Solutions

Carefully define the following terms: Proof by Reindexed Induction, well-ordered by <.

To prove Vz € N, P(x) by reindexed induction, we must (base case) prove P(1) is true; and
(inductive case) prove Vo € N (with x > 2), P(x —1) — P(z). Given a set S and an ordering
<, we say that S is well-ordered by < if every nonempty subset of S has a minimum element,
in the < ordering.

Carefully state the following: Proof by Cases Theorem, Proof by Contradiction Theorem
The Proof by Cases theorem states: For any propositions p, g, to prove p — ¢, we can find
propositions ¢y, ... ¢, such that ¢; V- - - Ve = T, and then prove (pAci) — ¢q, ..., (pAck) — q.
The Proof by Contradiction theorem states: For any propositions p, q, to prove p — ¢, we
can prove p A g = F.

Let a, = 3n? + 7. Prove that a, = O(n?).

This must be done in two parts, i.e. a, = O(n?) and a,, = Q(n?).

a, = Q(n?): Choose ng = 1 and M = 1. Let n € N with n > ng be arbitrary. Now
Mlan| = [3n? + 7| = 3n? + 7 > 3n? > n? = [n?|. Hence M|a,| > |n?|.

NOTE: Some of you really wanted ng = 1 and M = %0 for a, = Q(n?). This doesn’t work.
For example, try n = 2: a, = 3-22 +7 =19, n?> =22 =4, so Mla,| = % =19<4=n?.

a, = O(n?): Choose ng = 3 and M = 4. Let n € N with n > ng be arbitrary. Now
n? >32=9>17 Hence 3n® +7 < 3n% +n? 50 |ay| = [3n® + 7| = 3n? + 7 < 4n? = M|n?|.
Hence |a,| < M|n?|.

ALTERNATIVE a,, = O(n?): Choose ng = 1 and M = 10. Let n € N with n > ng be
arbitrary. Now (M — 3)n? = Tn? > 7. Hence 3n? +7 < Mn?, so |a,| = |3n?2+ 7| =3n2 +7 <
Mn? = M|n?|.

Prove the following: Vo € R, 3z — 2|z + 1| < z.

Let € R be arbitrary. We have two cases, based on whether x > —1 or z < —1.
Case x > —1: Here [z + 1| =2+ 1,503z —2jz+ 1| =3z -2z +1) =z -2 < x.

Case ¢ < —1: Here [z + 1| = —(z+ 1), s0 3z — 2|z + 1] = 3z + 2(z + 1) = 5z + 2. Now,
r<—1,s0dx < —4,s04dr+2< —-44+2=-2<0,s0r+4r+2<x+0,s0dr+2 < .
Combining, we get 3z — 2|z + 1] < x, just as in the first case, as desired.

n
Prove the following: Vn € N, 2(21 —1)=n?-1.
i=0
Base case (n =1): 211:0(21' —1) = -1+ 1 = 0, which equals 1> — 1 = 0.
Inductive case: Let n € N and suppose that > 1" ((2i —1) =n?—1. Add 2(n+1)—1=2n+1
to both sides, getting 2?201(21' —=n?’-1+2n+1=(n+1)2-1.

Recall the Fibonacci numbers F;,. Prove that Vn € N with n > 3, that F,, > 1.1".

Helpful facts: 1.12 = 1.21, 1.13 = 1.331, 1.1* = 1.4641

We need two base cases: Fy =2 > 1.331 = 1.13, and F; = 3 > 1.4641 = 1.1*.

Inductive case: Let n € Nwith n > 3 be arbitrary. Assume that F, > 1.1" and Fj,41 > 1.1+
Adding the inequalities, we get F, 10 = Fp+Fpp1 > 1.174+1.1"7 = 1.17(1+1.1) = 1.1%(2.1) >
1.17(1.21) = 1.1"1.1%2 = 1.1"*2. Hence F, o > 1.1"+2,



7. Solve the recurrence with initial conditions ag = 2,a; = 3, and recurrence relation a, =
2ap-1 — ap—2 (n > 2).
The characteristic polynomial is r? — 2r + 1 = (r — 1)2. Hence we have a double root r = 1,
and the general solution is a, = A1™ 4+ Bnl™ = A+ Bn. We now apply the initial conditions
2=agp=A4+B-0=Aand3=a1=A4A+B-1=A+ B, toget A=2 B = 1. Hence the
specific solution is a, = 2 + n.

For the remaining problems 8-10, we consider a new rounding function, “thround”. For z € R,
we define “the thround of 2”, writing [2], as an integer satisfying [z] — 3 <z < [2] + 2.

8. Prove uniqueness, ie. Vo € R l[z] € Z, [2] — § <z < [2] + 2.

Let x € R be arbitrary. Suppose we had integers [x]|; and [z]2 satisfying <lz]1+2
and [z], — < . Combining the two orange inequalities gives [z]; — 3 < [2]2 + 3,
ie. [z]1 < [z]2 + 1 (after adding % to both sides). Combining the other two inequalities
gives [z]o — 3 < [z]1 + 2, i.e. [z]s — 1 < [z]; (after subtracting 2 from both sides). Hence

[z]2 — 1 < [z]1 < x2 + 1, and by a theorem from the book (1.12d), we have [z]s = [z];.

9. Prove existence, i.e. Vo € R 3[z] € Z, [2] — 3 <z < [2] + 2.
We must begin by letting £ € R be arbitrary.

PROOF 1: Define S = {n € Z:n <z + %}, which has upper bound z + % This is a
half-line, so is a nonempty set of integers. By maximal element induction, there must be
some maximum element [z] € S (in particular, [z] is an integer). Hence, [z] < z + % and
[2] +1 > 2 + §. Subtracting 1 throughout and recombining, we get [2] — ¥ <z < [z] + 2.

PROOF 2: We apply the floor function to z+ %, getting an integer m = |z + %J which satisfies
m < x—l—% < m+1. Now, we subtract % throughout, getting m — % <z+ % — % <m+4+1-— %,
ie. m— % <z <m+ % Hence we have found an integer, namely m, that satisfies the desired
thround double inequality.

10. Prove or disprove: Vo € RVk € Z, [z + k] = [z] + k.
The statement is true. Let x € R and k € Z be arbitrary.

PROOF 1: Apply problem 9 to = to get [2] — 3 < x < [z] + 2. Add k throughout to get
(2] +k— % <z+k < [z]+k+ % Now, apply problem 8 to = + k. There is at most one
integer n satisfying n — % <z+k<n+ % However, we have n = [z] 4+ k (from the preceding
calculation) and n = [z + k| (from problem 9 applied to x + k) satisfying both inequalities.
Hence, [z] + k = [z + k]

PROOF 2: Apply problem 9 to z to get [z] — # < « < [z] + 2. Add k throughout to

get < [z] +k + % Apply problem 9 to x + k to get [z + k] — % <

. Combine the orange inequalities to get [z] + k — & < [z + k] + 2, i.e.

[2] + k < [z + k] + 1. Combine the two other inequalities to get [z + k] — + < [z] + k+ 3, i.e.
[z + k] —1 < [z]+ k. Hence [z + k] —1 < [z]+k < [x+ k] + 1, so by a theorem from the book
(1.12d), we have [z + k] = [z] + k.



