MATH 245 S23, Exam 2 Solutions

1. Carefully define the following terms: Proof by Reindexed Induction, well-ordered by $<$.

To prove $\forall x \in \mathbb{N}, P(x)$ by reindexed induction, we must (base case) prove $P(1)$ is true; and (inductive case) prove $\forall x \in \mathbb{N}$ (with $x \geq 2$), $P(x-1) \rightarrow P(x)$. Given a set S and an ordering $<$, we say that S is well-ordered by $<$ if every nonempty subset of S has a minimum element, in the $<$ ordering.
2. Carefully state the following: Proof by Cases Theorem, Proof by Contradiction Theorem The Proof by Cases theorem states: For any propositions p, q, to prove $p \rightarrow q$, we can find propositions $c_{1}, \ldots c_{k}$ such that $c_{1} \vee \cdots \vee c_{k} \equiv T$, and then prove $\left(p \wedge c_{1}\right) \rightarrow q, \ldots,\left(p \wedge c_{k}\right) \rightarrow q$. The Proof by Contradiction theorem states: For any propositions p, q, to prove $p \rightarrow q$, we can prove $p \wedge \neg q \equiv F$.
3. Let $a_{n}=3 n^{2}+7$. Prove that $a_{n}=\Theta\left(n^{2}\right)$.

This must be done in two parts, i.e. $a_{n}=O\left(n^{2}\right)$ and $a_{n}=\Omega\left(n^{2}\right)$.
$a_{n}=\Omega\left(n^{2}\right)$: Choose $n_{0}=1$ and $M=1$. Let $n \in \mathbb{N}$ with $n \geq n_{0}$ be arbitrary. Now $M\left|a_{n}\right|=\left|3 n^{2}+7\right|=3 n^{2}+7 \geq 3 n^{2} \geq n^{2}=\left|n^{2}\right|$. Hence $M\left|a_{n}\right| \geq\left|n^{2}\right|$.
NOTE: Some of you really wanted $n_{0}=1$ and $M=\frac{1}{10}$ for $a_{n}=\Omega\left(n^{2}\right)$. This doesn't work. For example, try $n=2: a_{n}=3 \cdot 2^{2}+7=19, n^{2}=2^{2}=4$, so $M\left|a_{n}\right|=\frac{19}{10}=1.9<4=\left|n^{2}\right|$. $a_{n}=O\left(n^{2}\right)$: Choose $n_{0}=3$ and $M=4$. Let $n \in \mathbb{N}$ with $n \geq n_{0}$ be arbitrary. Now $n^{2} \geq 3^{2}=9 \geq 7$. Hence $3 n^{2}+7 \leq 3 n^{2}+n^{2}$, so $\left|a_{n}\right|=\left|3 n^{2}+7\right|=3 n^{2}+7 \leq 4 n^{2}=M\left|n^{2}\right|$. Hence $\left|a_{n}\right| \leq M\left|n^{2}\right|$.
ALTERNATIVE $a_{n}=O\left(n^{2}\right)$: Choose $n_{0}=1$ and $M=10$. Let $n \in \mathbb{N}$ with $n \geq n_{0}$ be arbitrary. Now $(M-3) n^{2}=7 n^{2} \geq 7$. Hence $3 n^{2}+7 \leq M n^{2}$, so $\left|a_{n}\right|=\left|3 n^{2}+7\right|=3 n^{2}+7 \leq$ $M n^{2}=M\left|n^{2}\right|$.
4. Prove the following: $\forall x \in \mathbb{R}, 3 x-2|x+1|<x$.

Let $x \in \mathbb{R}$ be arbitrary. We have two cases, based on whether $x \geq-1$ or $x<-1$.
Case $x \geq-1$: Here $|x+1|=x+1$, so $3 x-2|x+1|=3 x-2(x+1)=x-2<x$.
Case $x<-1$: Here $|x+1|=-(x+1)$, so $3 x-2|x+1|=3 x+2(x+1)=5 x+2$. Now, $x<-1$, so $4 x<-4$, so $4 x+2<-4+2=-2<0$, so $x+4 x+2<x+0$, so $5 x+2<x$. Combining, we get $3 x-2|x+1|<x$, just as in the first case, as desired.
5. Prove the following: $\forall n \in \mathbb{N}, \sum_{i=0}^{n}(2 i-1)=n^{2}-1$.

Base case $(n=1): \sum_{i=0}^{1}(2 i-1)=-1+1=0$, which equals $1^{2}-1=0$.
Inductive case: Let $n \in \mathbb{N}$ and suppose that $\sum_{i=0}^{n}(2 i-1)=n^{2}-1$. Add $2(n+1)-1=2 n+1$ to both sides, getting $\sum_{i=0}^{n+1}(2 i-1)=n^{2}-1+2 n+1=(n+1)^{2}-1$.
6. Recall the Fibonacci numbers F_{n}. Prove that $\forall n \in \mathbb{N}$ with $n \geq 3$, that $F_{n}>1.1^{n}$.

Helpful facts: $1.1^{2}=1.21,1.1^{3}=1.331,1.1^{4}=1.4641$
We need two base cases: $F_{3}=2>1.331=1.1^{3}$, and $F_{4}=3>1.4641=1.1^{4}$.
Inductive case: Let $n \in \mathbb{N}$ with $n \geq 3$ be arbitrary. Assume that $F_{n}>1.1^{n}$ and $F_{n+1}>1.1^{n+1}$.
Adding the inequalities, we get $F_{n+2}=F_{n}+F_{n+1}>1.1^{n}+1.1^{n+1}=1.1^{n}(1+1.1)=1.1^{n}(2.1)>$ $1.1^{n}(1.21)=1.1^{n} 1.1^{2}=1.1^{n+2}$. Hence $F_{n+2}>1.1^{n+2}$.
7. Solve the recurrence with initial conditions $a_{0}=2, a_{1}=3$, and recurrence relation $a_{n}=$ $2 a_{n-1}-a_{n-2}(n \geq 2)$.
The characteristic polynomial is $r^{2}-2 r+1=(r-1)^{2}$. Hence we have a double root $r=1$, and the general solution is $a_{n}=A 1^{n}+B n 1^{n}=A+B n$. We now apply the initial conditions $2=a_{0}=A+B \cdot 0=A$ and $3=a_{1}=A+B \cdot 1=A+B$, to get $A=2, B=1$. Hence the specific solution is $a_{n}=2+n$.
For the remaining problems 8-10, we consider a new rounding function, "thround". For $x \in \mathbb{R}$, we define "the thround of x ", writing $[x]$, as an integer satisfying $[x]-\frac{1}{3} \leq x<[x]+\frac{2}{3}$.
8. Prove uniqueness, i.e. $\forall x \in \mathbb{R}![x] \in \mathbb{Z},[x]-\frac{1}{3} \leq x<[x]+\frac{2}{3}$.

Let $x \in \mathbb{R}$ be arbitrary. Suppose we had integers $[x]_{1}$ and $[x]_{2}$ satisfying $[x]_{1}-\frac{1}{3} \leq x<[x]_{1}+\frac{2}{3}$ and $[x]_{2}-\frac{1}{3} \leq x<[x]_{2}+\frac{2}{3}$. Combining the two orange inequalities gives $[x]_{1}-\frac{1}{3}<[x]_{2}+\frac{2}{3}$, i.e. $[x]_{1}<[x]_{2}+1$ (after adding $\frac{1}{3}$ to both sides). Combining the other two inequalities gives $[x]_{2}-\frac{1}{3}<[x]_{1}+\frac{2}{3}$, i.e. $[x]_{2}-1<[x]_{1}$ (after subtracting $\frac{2}{3}$ from both sides). Hence $[x]_{2}-1<[x]_{1}<x_{2}+1$, and by a theorem from the book (1.12d), we have $[x]_{2}=[x]_{1}$.
9. Prove existence, i.e. $\forall x \in \mathbb{R} \exists[x] \in \mathbb{Z},[x]-\frac{1}{3} \leq x<[x]+\frac{2}{3}$.

We must begin by letting $x \in \mathbb{R}$ be arbitrary.
PROOF 1: Define $S=\left\{n \in \mathbb{Z}: n \leq x+\frac{1}{3}\right\}$, which has upper bound $x+\frac{1}{3}$. This is a half-line, so is a nonempty set of integers. By maximal element induction, there must be some maximum element $[x] \in S$ (in particular, $[x]$ is an integer). Hence, $[x] \leq x+\frac{1}{3}$ and $[x]+1>x+\frac{1}{3}$. Subtracting $\frac{1}{3}$ throughout and recombining, we get $[x]-\frac{1}{3} \leq x<[x]+\frac{2}{3}$.
PROOF 2: We apply the floor function to $x+\frac{1}{3}$, getting an integer $m=\left\lfloor x+\frac{1}{3}\right\rfloor$ which satisfies $m \leq x+\frac{1}{3}<m+1$. Now, we subtract $\frac{1}{3}$ throughout, getting $m-\frac{1}{3} \leq x+\frac{1}{3}-\frac{1}{3}<m+1-\frac{1}{3}$, i.e. $m-\frac{1}{3} \leq x<m+\frac{2}{3}$. Hence we have found an integer, namely m, that satisfies the desired thround double inequality.
10. Prove or disprove: $\forall x \in \mathbb{R} \forall k \in \mathbb{Z},[x+k]=[x]+k$.

The statement is true. Let $x \in \mathbb{R}$ and $k \in \mathbb{Z}$ be arbitrary.
PROOF 1: Apply problem 9 to x to get $[x]-\frac{1}{3} \leq x<[x]+\frac{2}{3}$. Add k throughout to get $[x]+k-\frac{1}{3} \leq x+k<[x]+k+\frac{2}{3}$. Now, apply problem 8 to $x+k$. There is at most one integer n satisfying $n-\frac{1}{3} \leq x+k<n+\frac{2}{3}$. However, we have $n=[x]+k$ (from the preceding calculation) and $n=[x+k]$ (from problem 9 applied to $x+k$) satisfying both inequalities. Hence, $[x]+k=[x+k]$.
PROOF 2: Apply problem 9 to x to get $[x]-\frac{1}{3} \leq x<[x]+\frac{2}{3}$. Add k throughout to get $[x]+k-\frac{1}{3} \leq x+k<[x]+k+\frac{2}{3}$. Apply problem 9 to $x+k$ to get $[x+k]-\frac{1}{3} \leq$ $x+k<[x+k]+\frac{2}{3}$. Combine the orange inequalities to get $[x]+k-\frac{1}{3}<[x+k]+\frac{2}{3}$, i.e. $[x]+k<[x+k]+1$. Combine the two other inequalities to get $[x+k]-\frac{1}{3}<[x]+k+\frac{2}{3}$, i.e. $[x+k]-1<[x]+k$. Hence $[x+k]-1<[x]+k<[x+k]+1$, so by a theorem from the book (1.12d), we have $[x+k]=[x]+k$.

